
QUANTITATION OF BURIED CONTAMINATION

BY USE OF SOLVENTS

First Interim Report

,.
Part 1. Solvent Degradation of Anlinc Cured Epoxy Resins

February, 1()72

Supported by

NASA Grant NGR 35 -001-0 12

Submitted to the

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

by the
, .-

DcpartllH'nt of PoJynlcr s and Coatings
North DalwL.t SLltc University
Far go, North Dakota 58102

f(NASA-CR-126306) QUANTITATION OF BURIED
CONTAMINATION BY USE OF SOLVENTS. PART 1:
SOLVENT DEGRADATION OF AMINE CURED EPOXY
RESINS A.E. Rhelneck, et al (North Dakota
State Unlv.) Feb. 1972 22 p CSCL 07D G3/06

N72-22116

Unclas
26291

Investigators: Alfred E. Rhcineck and Robert A. Heskin

,/_J ; -'/7
Report prepared and subn.itled by: ~~~I!/df

Loren W. Hill
Associate Professor



TABLE OF CONTENTS

Introduction

1. Background ,....... 1
2. Solubility Parameter ,. .. . . .. 4

Experimental

1. Preparation of Amine Cured Epoxy Resins......... 7
2. Solubility Parameter Determination. . . . . .. . . . . . • . . 8

Results and Dis cus sian. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 10

Potential Applications '. . . . . . . . . . . . . . .. 17

Summar y ......•..••..........•..... ; .• : ...•....•. '. . . •. 18

References ;... . . . .. . . .. . . . .. .. . . .. . .. . .. .. 20
"

..



INTRODUCTION

1. Backgr ound

The objectives of the overall project are: (l) to develop non-sporicidal

methods for solvent degradation of cured polymeric resins that are used

in spacecraft, and (2) to determine if reaction conditions during resin cure

cause decontaluination of the component that is being fabricated. This

interim report deals with the first Objective; more specifically, it describes

the application of solubility paramder methods to the degradation of aluinc

cured epoxy resins. The research described herein was carried out by

v
'i(' t

Robert A. Heskin under the direction of Alfred E. Rheineck. The death of

Dr. Rheineck on August 10, 1971 prevented him from submitting a report on

this work.

Of the plastics used as potting compounds and adhesives in space. vehid(~s,

epoxy resins arc the most prevalent (l). The three epoxy resins uSI~d in

this study were obtained from the Plastics and Resins Division of 5hl'11
. "

Chemical Company and can be identified by their trade names, Epon 815,

Epon 836, and Epon 1001. The structure of the uncured resins can be re-

presented as:

i~ Current <.l.ddr('ss: Dr. /{'()Iwrl A. H('sl,in, D('Solo, Inc., 1700 S.Ml.

Prosp('cl H.oad, I>.-s !'/:lilll'S, IJJ. (,OOIX.
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o .
cH'z - ~H- CHz

Epoxy resins of this type are known as glycidyl ethers of bisphenol A. They

are prepared by the reaction of epichlorohydrin (I) with bisphenol A (II) under

bas i c conditions (2) .

. /0,
CI-CHz-CH-CHz

I II.

,.

The curing of an epoxy resin using an alkyl diaminc IS shown in Figure 1.

Crosslinking occurs by; attack of an1inl' on til(' oxiranc group of the resin.

As indicated in Figure l, both anlilw gr'oup~ rl'act in SOl1ll' l"a~l'~ while in

others only one ,-NHz of the dialninc reacts. Attack of the oxiranc by hydroxyl

groups present in the resin does not occur at an appreciable rate in the absence

of catalysts.

Cros slinked polymer s are es sentially insoluble. However, such

polymer s can be swollen by appropriate solvents. Selection of the solvent - .'

can be facilitated by use of the solubility parameter concept (3). Recovery

of buried contalnination from crosslinked polyrncrs is currently a difficult

problem. Pflug' (..J:) pointed out that recovery of tH'l'dl'd spores [rotH pi\'l""

parts by grinding or plllvl'rising is gClwrally poor. Pdl'rscn (I)) rccl'ntly

reported that us,' or 1.1](' />ioddcc!.ion grindl'r rl'sllltl,d in 5.7% recovery

from a seeded n10dcl SYStCll1 composed of larninatcd polystyrene. Values

of 0.1 % recovery for seeded methyl methacrylate and 1.2'10 recovery for
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seeded E~cobond had been reported previously (5). The rationale of the

present study is that mechanical degradation of a swollen cured resin in

the presence of a suitable solvent may increase recovery substantially.

Complete dissolution in a non-toxic solvent yields a higher recovery than

grinding or pulverizing for piece parts in general (4); however, for cross-

linked polymers it is very doubtful that complete dissolution can be achieved.

A possible exception rnay occur when a chelnical reaction takes place between
,.

solvent and polymer to cause depolymerization.

2. Solubility Parameter

The dcveloplnent of therrnodynarnic treatlncnt of non-electrolyte

!

solutions has becn rcvi(~w(~d by IIilckbrand and ScoLl (6). Scalc!lard ((»)

inlr(Jdtlccd lhe l(~rnl "cohcsivt, ('ncrgy d(~nsily" in(() Hihkl>randls theory In

1931, and th~ square root of the cohesive ('ncr gy density was subsequently

named 'IS olubility parameter". The application of solubility parameter

concepts to polymer solutions was described by Burrell (3). As Burrell

pointed out, the most useful equation developed by Hildebrand is

1/2 II2 2 . "

6 Hm = Vm [(6El /V l ) - (6 E z/ V2) ] ~l ~2 (1)

where 6Hm = enthalpy of mixing COGlpOncnts 1 and 2
Vm = volume of mixture
6E = internal energy of vaporization of 1 or 2
V' = molar volmne of 1 or 2
~ = volmTIe fraction of 1 or 2

Th(~ t(~rnlS nll'nlionl'd above are de fi n,'d ;ts:

coh(~sive cncr gy density = 6 Ej / Vj II
Solubility parameter = <Si = (6 Ei/ Vj) t.

Rearrangi.ng equation (l) and introducing the definition of solubility parameter,
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one obtains

(2)

Since the difference on the RHS is squared and Vm , 01, and O2 are all

positive by their definitions, 6Hm is always positive according to the

assumptions of this treatment. The most common thermodynamic criterion

for spontaneity of a process is that the change in free energy,6G, be less

than zero. The familiar equation

(3)

can then be used to interpret the significance of solubility paran1clcrs. The

entropy change, 6Sm , is always pQsitive for a mixing process; thus, the

second term on the RHS (-T6S) is always negative (T ::: absolute temperature).

As long as 6Hm is not too positive, 6Gm will be negative and mixing or

dissolution will be p,ossible. If 6Hm is larger than T6Sn1, 6Gm will be

positive, and dissolution will not be possible at the temperature of the

experin1cnt. If we consider conlponent 2 to be the polymeric solute, then

frorn equation (2) it is seen that one must select a solvent with a similar

.'
solubility parameter so that the difference (01 - (2) is 'not too large. The

most favorable situation corresponds to 01 ::: 62 because then 6Hm ::: 0

according to ,equation (2) and 6Gm ::: - T6Sm by equation (3). In other words,

if the 6 values of two substances are nearly equal, the substances will be

miscible.

On~c the practical applications of lhe solubility paran1Ctcr approach

were realized, St'Hli -<'111pirical and purcly cll1pirical extensions
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developed to expand the range of applicability. For instance, Small (7)

assigned group values (and atomic values) for fragments of molecules which

when added and normalized by density and molecular weight gave the

solubility parameter of any molecule for which the structural formula was

k~nown. Snlall's "molar attraction constants", as the group values are
I

known, yield 6~ s within about "± 1 unit in most cases. It wa s soon found

.that hydrogen bonding .str~ngth was not adequately accommodated by the.

theory. Better solubility predictions were obtained if solvents were

classified into three categories (3):

Class I
Class II
Clas s III

Poorly hydrogen bonded
Moderately hydrogen bonded
Strongly hydrogen bonded

,
TypicaJ solvents in each class are given in Table II, page! 1.

I
Solubility parameters of solvents can be obtained most directly from

experimental determination of the heat of vaporization. The internal

energy change ;can be computed from the heat change (/:,H = /:,£ - RT), and

then 6 can be dbtained from the definition of solubility parameter. Burrell
"

(3) describes s'everal other methods including use of Small's molar attract ion

constants. For polyn1ers the precise structure is HeIdorn known and

vaporizat ion cannot be achieved without dCCOl11position. There forl',

solubility parameter s of polymer s are usually obtained from solubility

experiments, A list of solvents within a given class and with gradually

increasing 6 is prepared. Solubility in each solvent is then tested. The

solubility parameter of the polymer is assigned as the midpoint of the

range of 6 values for solvents which dissolve or, in the case of crosslinkf'd
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polymers, swell the polymer. Although this method is similar to trial and

error, it should be noted that it is necessary to use only one solvent of a

group with similar 6 values in preparation of the list of solvents or

"solvent spectrum" as this list is called. A solvent spectrum was used

in this study to obtain the solubility parameter of the cured epoxy resins.

EXPERIMENTAL

1. Preparation of Amine Cured Epoxy Resins

The properties of the commercial epoxy resins as given in a Shell

Chemical Company bulletin are shown in Table 1. With reference to the

structure ind1catcd on page 2 , Epon 8] 5 has n .~ 0, Epon 836 has n ;:-- 1

and Epon 100 I has n ;- Z. In addition to the bisphenol A derivative, Epon 8] 5

TABLE I

Properties of Epon Resins

Weight per Gallon, lb. 20°C
Hydroxyl content, equiv.

OH/1 00 g. resin
Average Molecular Weight
Melting Point, . 0 C

Flash Point, Tag open cup, °F
Epoxide Equivalent

-1:- Determined in this laboratory.

Epon 815

9.5

0.05
330

> 175
175-195

(170.8)-11-

Epon 836

9.9

0.21
710

40-45
> 175
280-350
(325)~(-

Epon 1001

9.9

'" .'
0.28
900

65-75
> 175
450-570

(-167)-11-

contains a small amount of a n1onofunetional epoxy diluent. The epoxidc

equivalent given in Table I is defined as the nurnber of grams of resin

containing 1 mole of oxirane groups. Oxiranc contents were determined
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by titration with hydrogen bromide in glacial acetic acid according to the

method of Dur betaki (8).

At room temperature Epon 815 is a liquid" of relatively low viscosity,

Epon 836 is a viscous liquid, and Epon 1001 is a solid. The physical state

of Epon 836 and Epon 1001 required that solutions be prepared in order to

reduce the viscosity and facilitate mixing of the curing agent. Solutions

containing 7510 resin py weight in methyl ethyl ketone were used. Epon 815
,.

was cured in the absence of solvent. Four amine curing agents were used;

ethylenediamine (EDA), diethy lenetriamine (DET A), triethylenetetraamine

(TETA) and tetraethylenepentaamine (TEPA). Samples containing 20 grams

resin were cured with sufficient quantities of each amine to correspond to

reaction of 1/3, 2/3, and all of the oxirane groups. Thus, there were

thirty six model sy.stems in all ( 4 amine curing agents) x (3 resins) x

(3 levels of cure).

The Epon 836 and Epon 100 1 were baked at 140 0 C for four hours in all
\

\
runs to maximize cure and remove solvent. The Epon 815 was cured witl\-

\

=- .'

out baking in some cases since no solvent was present, and in other cases

\

this resin was also baked at 140°C for four hours. The three model com-

pounds obtained from Epon 815 cured with TETA were analyzed by infrared. .

spectroscopy using the potassium bromide pellet technique.

2. Solubility Paranwtt'r Ddcrrnination

series of sCJJv('l1ts of gl";tc!uaJJy inc1"('asillg solubility pacunl'tt'r were
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obtained for each of the three classes of hydrogen bonding. It was soon

noted that none of the solvents in Class III (strongiy hydrogen bonded)

dissolved the epoxy polymers. Thus, Class III solvents, mainly alcohols,

were excluded.

,". The lTIodel amine cured epoxy polymers were prepared in 4 oz. brown
j

glas s bottles. The sample siz e was 20 grams. In order to effectively

realize the action of the solvents towards dissolution or swelling of the
..

polymers, the sample size had to be reduced to 20-30 mesh particles with

a hacksaw. A blade containing 32 teeth per inch was used. The epoxy

particles (0.04 gram) were weighed into a 10 mm. by 75 mm. pyrex test

"

tube., The solvent \;as added by means of a pipet to make a 2 % solution by

wei·ght. The test tubes were placed in a dry ice bath and allowed to freeze.

I. I .
The test tubes wcrc then scaled with a gas -oxygcn torch.

The san1ples were now·ready to be placed in a constant tcnlperatUl"c

water bath. The temperature was maintained at 60°C for all solubility,

tests. The samples were agitated by a vacuum windshield wiper assembly

.'operated in reverse. The test tubes were wired onto rods submerged in

the water bath and connected to the windshield wipers which were run on

compressed air. The samples were agitated at 60°C for 48 hours and

then inspected visually for swelling or dissolution.
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RESULTS AND DISCUSSION

Table II is representative of the data obtained using the solvent spectrum

method. These data are for Epon 836 cured with sufficient triethylene-

tetraarnine (TETA) to correspond to complete reaction of oxirane groups.

'tli.e thirty-five other model systems were treated in a similar manner.
j

I

The solid lines ,within the body of the table bracket those solvents which

caused either swelling ,or dissolution. The solubility parameters of the

bracketed solvents establish the solubility parameter range of the model

epoxy polymer 'for Class I and Class II solvents. No solubility or swelling

was noted in Class III solvents for the.Dlodel system considered in Table

II, and similar results were obtained for the other model systems. In

cert'ain' cases a: solvent well outside the solubility range caused swelling;

J

benzonitrile, a Class I solvent, is an example in Table II. This behavior

corresponds to a specific interaction between solute and solvent. Frequently

the natur e of the inter action is not known (3).
!

The solubility parameter ranges for all thirty six model epoxy polymers

.'
are compiled in Table III. An entry of "Ins. I' indicates that the polymer

was not dissolved or swollen by any of solvenls tl'stcd. An entry of a

single nUllll){'~" rather than a range, indicates that the polymer was dis-

solved or swollen by only one of the solvents used in the test. The width

of the range observed for a solute is sym,bolized by 6,6 and reported as a

~ tolerance (3). The greatest tolerance reported in Table III is for Epon

836 cured with 33 1/30/0 or 66 2/3% ethylcncdiarninein Class I solvents.



TABLE II

Determination of the solubility parameter s at 60 PC of Epon 836
cured with triethylenetetraamine (T ET A) corresponding to 100 '70
reaction of oxirane. Inspection after 48 hours of sealed ampules
containing 2'70 by weight of 20 - 30 mesh particle s.

11

Clas s I Solvents

Solvent Solubility Parameter Observation
,"

Hexane 7.3
Heptane 7.-1 insoluble
Mineral Spirits 7.6
Var solI 8. 1
Turpentine 8. 1
Benzonitrile 8.4 swollen
Dipentene 8.5
Carbon tet. 8.6
p-Chloro toluene 8.6
Toluene 8.9 insoluble
Benzene 9.2
Trichloroethane 9.3
Chlorobenzene 9.5 insoluble
Tetralin 9.5
1,1,2-trichloroethane 9.6
Tetrachloroethane 9.7 slightly soluble
Ethylene dichloride 9.8
2-nitro propane 9.9 .,. .'
Nitro benzene 10.0 soluble
I-nitro propane 10.3 slightly soluble
Acrylnotrile 10.5 insoluble
1- bromonaphthale ne 10.6
Nitr 0 ethane 11. 1 insoluble
Acetonitr He 11. 9 insoluble
Nitro methane 12.7 reacted

Result: Solubility parameter range, 9.7 to 10.3



TABLE II (cont 'd)

Class II Solvents

12

Solvent

Ethyl benzoate
Sec. amyl acetate
Methyl isobutyl ketone
Methyl n-amyl ketone
Carbitol acetate
Ethyl acrylate
Cellosolve acetate
Butyl acrylate
Butyl ceJlosolve
Ethyl acetate
Tetrahydrofuran
Diacctone alcohol
Methyl ethyl ketone
Methyl acetate
p-Dioxane
Acetone
Methyl benzoate
Methyl cellosolve
Aniline .
Dimethyl sulfoxide
Dimethyl formamide
Dimethyl phosphite
Propylene car bonate,
Methyl sulfone
Ethylene carbonate

Solubility Parameter

8.2
8.3
8.4
'8.5
8.5
8.6
8.7
8.8
8.9
9. 1
9. 1
9.2'
9.3
9.6
9.9

10. a
10.5
10.8
11. 8
12.0
12. 1
12.5
13. 3
14.5
14.7

Observation

insoluble

insoluble ,.

slightly soluble

soluble

swollen

swollen

insoluble
insolubk

\
\

'\
- "

Result: Solubility parameter ra~geJ 9. 1 to 11.8
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T ABLE II (cont'd)

Class III Solvents

Solvent Solubility Parameter Obs er vation

~.''l-.. Carbitol 9.6 insoluble
n-Octyl a~cohol 10.3 insoluble
t-Butyl al'cohol 10.6
n-Amyl alcohol 10.9
n- Butyl alcohol 11. 4 insoluble
Isopropyl alcohol' 11. 5 ,.
n-Propyl alcohol 11.9 insoluble
Diethylene glycol 12. I
Ethanol 12.7 ins oluble
Methyl alcohol 14.5 insoluble
Ethylene glycol 14.6
Glycerol 16.5
Formatnide 19.2 insoluble

, .'
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The range reported is 8.4 to 12.7; thus, the tolerance is 66::: ±(12.7-8.4)/2

::: ~ 2.2. Hildebrand and Scott (9) have considered tolerance from a

theoretical point of view. They computed that a hypothetical high molecular

weight polymer would have 6 6 ~ ~ 1. 1 while a nonpolymeric liquid would

have 66 ';!± 3.5. The observation of tolerances between 1.1 and 3.5
j

suggests that cur~ng has not produced high n10lecular weight polymers for

all of the model systems.,prepared in this study.

Trends in tolerances can be noted in Table Ill. As expected, the

tolerance decreases as the amine level increases. An increase in amine

level will cause an increase in crosslink density and possibly also an incrl'ase

in the average n101ecular weight of agglomerates. The observation of a

maximum in tole'rance for cured Epon 836 ( n ;- 1.0) as compared to Epon

I
815 ( n -;; 0) and Epon .1001 ( n~- 2. 0) is somewhat unexpected. One might

expect a smaller tolerance for Epon 815 because there is less distance

between oxirane ,groups, and therefore, a higher crosslink density. The

narrower tolerance for cured Epon 1001 (compared to Epon 836) may

simply reflect a higher molecular weight in the cured state. Thus, an

increase in n has two opposing effects on the tolerance. First, the cross-

link density decreases as n increases tending to increase the tolerance.

Second, the molecular weight of the cured polymer may increase as n

increases tending to decrease the tolerance. R, A. Heskin (l0) has dis-

cuss(~cl vari,tliolls III tolerance at greater length.

Interprl'latiolls ot" the cfkcl of anlinl.' lL'vcls and the structure of the

.'
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amine used in the curing process are cOlnplicated by incomplete reaction

of the amines with oxirane groups. Infrared spectra of the Epon 815 resin

cured with 100 % of the stoichiometric amount of amine required for complete

cure indicate that only about 80 to 90 % of the oxirane groups have actually

reacted. This result was noted for sanlples that were cured without baking,

but baking at 140°C for four hours did not noticeably decrease the amount

of unreacted oxirane. With 66 2/3 % of the amine r~quired for cOlnplete

reaction, infrared results indicated that about 50 % of the oxirane groups

had reacted and in the case of 33 1/3 % amine about 25 % of the oxirane groups

had actually reacted. Infrared spectra and a ITlore complete discussion of

"

. the interpretation of infrared results are given by Heskin (10).

The solubility parameters of uncured epoxy resins are given in Table

IV. The uncured. re~ins have a much greater tolerance, especially in

Class II solvents, than the cured resins considered in this study. Of course,

most of the resins in Table IV have a much higher molecular weight

(large n) than the resins used in this study, but since they are not cured,

eros slinking would be minimal.

TABLE IV

Solubility Parameters of Uncured Epoxy Resins
From Reference (J])

Epon Resin n Class I Clas s II Class III

Epon 864 1.5 9.5-12.7 8.5-14.7 0
Epon 1001 2 10.6-]1.1 8.5-13.3 0
Epon 1004 5.5 0 8.5-13.3 a
Epon ]007 ]4 0 8.5-13.3 0
Epon ]009 21 0 8.5- 9.9 0

r
" ,

\
\

\

.'
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POTENTIAL APPLICATIONS

The preceding section identifies solvents which would be useful in

solvent assisted degradation of cured epoxy resins. 1£ solvents that have

been tested prove to be toxic to spores, other solvents having solubility

p'arameters within the tolerance established by this study can be tested
j

for sporicidal activity. Thus, determination of the solubility parameters
I

and tolerance of epoxy .polyrner s m.ake it pos sible to screen potential

.""
solvents without carrying out solubility tests. Although Table II contains

an extensive list of solvents, this list is only a fradion of the solvents

that could be tested. Since the nmuber of solvents is so large, a purely

trial and error approach to finding a solvent with the 'required properties

could be very tedious without the information provided by the solubility

I
parameter method. The solubility param.eter s of 366 solvents and many

resins are compiled in a DuPont bulletin (12).

As indi cated in the introduction, detern1ination of buried contanlination

is difficult beca:use grinding and pulverizing procedures arc toxic to spores.

"
If the solubility'results of this study make complete dissolution of epoxy

piece parts pos sible, determination of buried contaminants will be gr eatly

facilitated. However, for highly eros slinked epoxy polymer s, complete

dissolution seems unlikely. Swelling of crosslinked polymers is likely to

occur in properly selected solvents rather than complete dissolution. It

appears very likely that mechanical degradation of the swollen polymers

could be achil:vl'd with ll~ss severe grinding thclll is required for the dry
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polymer. Therefore, the methodology recommended for testing recovery

of seeded spores from cured epoxy polyn1ers includes the following steps:

1. Initial reduction of massive objects by sawing or dicing to pieces the

size of a 1/2 cm cube.

2. Soaking the pieces in a non-sporicidal solvent until swelling ceases.

3. Gentle grinding of the swollen pieces under solvent in a mortar and

pistle.
,.

4. Determination of recovery by accepted bioassay techniques.

In order to check for inadvertent contamination during the test, samples

that have been heat sterilized should be treated in a manner identical to

that for seeded sarnples. Pflug (4) has discussed the need for negative

controls of this type.

SUMMARY

The solubility and /01' swelling of cured epoxy resins has been studied

by the solubility parameter method. Determination of the solubility \.
'i'

\
parameters will facilitate solvent selection for solvent assisted degradatiqn

of cured epoxy polyn1ers used in spacecraft. A method for ~,n1proving re-

covery of seeded spores is suggested. It is anticipated that the results

will be useful in assaying buried contaminants.

Three commercial l~POXY resins (Epon 811:), Epon 836, and Epon 100 I )

were cured using four different alkyl anlinl'S. For l'<lch resin<lJ11il1l' l'0111-

bination, three levels of a111ine were used corresponding to 33 1/3%,

I.

66 2/3% and 100% of the al11ine required to react with the oxirane groups
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of the resin. The solubility pararneters (6) of the 36 resulting model com-

pounds were determined 1n Class I (poorly hydrogen bonded) and Class II

(moderately hydr ogen bonded) solvents. None of the Clas s III solvents

(strongly hydrogen bonded) caused dissolution or swelling. The tolerance

(66) of cur,ed resins is discussed in terms of polymer structure.

,.

\
\

- .'

\
\
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